Embeddings of Picard Varieties

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embeddings of Symmetric Varieties

We generalize to the case of a symmetric variety the construction of the enveloping semigroup of a semisimple algebraic group due to E.B. Vinberg, and we establish a connection with the wonderful completion of the associated adjoint symmetric variety due to C. De Concini and C.

متن کامل

On Picard Bundles over Prym Varieties

Let P be the Prym variety associated with a covering π : Y → X between non-singular irreducible projective curves. If P̃ is a principally polarized Prym-Tyurin variety associated with P , we prove that the induced Abel-Prym morphism ρ̃ : Y → P̃ is birational onto its image for genus gX > 2 and deg π 6= 2. We use such result to prove that the Picard bundle over the Prym variety is simple and moreov...

متن کامل

Equivariant Embeddings into Smooth Toric Varieties

We characterize embeddability of algebraic varieties into smooth toric varieties and prevarieties. Our embedding results hold also in an equivariant context and thus generalize a well-known embedding theorem of Sumihiro on quasiprojective G-varieties. The main idea is to reduce the embedding problem to the affine case. This is done by constructing equivariant affine conoids, a tool which extend...

متن کامل

Smooth Projective Symmetric Varieties with Picard Number One

We classify the smooth projective symmetric G-varieties with Picard number one (and G semisimple). Moreover we prove a criterion for the smoothness of the simple (normal) symmetric varieties whose closed orbit is complete. In particular we prove that, given a such variety X which is not exceptional, then X is smooth if and only if an appropriate toric variety contained in X is smooth. keywords:...

متن کامل

Q-factorial Gorenstein Toric Fano Varieties with Large Picard Number

In dimension d, Q-factorial Gorenstein toric Fano varieties with Picard number ρX correspond to simplicial reflexive polytopes with ρX+d vertices. Casagrande showed that any d-dimensional simplicial reflexive polytope has at most 3d vertices, if d is even, respectively, 3d − 1, if d is odd. Moreover, for d even there is up to unimodular equivalence only one such polytope with 3d vertices, corre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1964

ISSN: 0002-9939

DOI: 10.2307/2034343